Wireless Capsule Endoscopy as a Diagnostic Technique in Disorders of the Small Bowel, Esophagus, and Colon

Corporate Medical Policy

File name: Wireless Capsule Endoscopy as a Diagnostic Technique in Disorders of the Small Bowel, Esophagus, and Colon
File code: UM.DIAG.06
Origination: 10/2004
Last Review: 12/2017
Next Review: 12/2018
Effective Date: 05/01/2018

Description/Summary

The wireless capsule endoscopy uses a device intended to visualize portions of the bowel that are not accessible via upper or lower endoscopy, primarily the small bowel. Patients swallow the capsule, which records images of the intestinal mucosa as it passes through the gastrointestinal (GI) tract. The capsule is collected after being excreted and the images then interpreted.

The evidence on wireless capsule endoscopy for patients with occult GI bleeding includes numerous case series that evaluate patients with a nondiagnostic standard workup. Relevant outcomes are test accuracy, test validity, and other test performance measures. The evidence demonstrates that capsule endoscopy can identify a bleeding source in a substantial number of patients who are unable to be diagnosed by other methods, with a low incidence of adverse events. Because there are no other options for diagnosing obscure small bowel bleeding in patients who have negative upper and lower endoscopy, this technique will likely improve health outcomes by directing specific treatment when a bleeding source is identified. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.

The evidence on wireless capsule endoscopy for patients with suspected small bowel Crohn disease or patients with an established diagnosis of Crohn disease who remain symptomatic or develop new, unexpected symptoms includes case series. Relevant outcomes are test accuracy, test validity, and other test performance measures. Although the performance characteristics and diagnostic yield of the capsule for this indication is less certain, there are also no other good diagnostic options, and as a result it is likely to improve health outcomes by identifying some cases of these disorders and directing specific treatment.
The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.

The evidence on wireless capsule endoscopy for other conditions, including acute upper GI bleeding, determining the extent of involvement in Crohn disease, ulcerative colitis, celiac disease, esophageal conditions, Lynch syndrome, colon cancer screening, portal hypertensive enteropathy, unexplained chronic abdominal pain, and for determination of patency of the GI tract, includes case series and some diagnostic accuracy studies. Relevant outcomes are test accuracy, test validity, and other test performance measures. For some of these conditions, eg, esophageal conditions and colon cancer screening, other modalities are available that are superior to capsule endoscopy. For other conditions, eg, determining the extent of Crohn disease, the accuracy of the device needs to be established before determining whether outcomes are improved. The evidence is insufficient to determine the effects of the technology on health outcomes.

The evidence on the patency capsule when used as a preliminary test for wireless capsule endoscopy consists of case series. Relevant outcomes are test validity and other test performance measures. Available studies report that capsule endoscopy following a successful patency capsule test results in high rates of success with low rates of adverse events. Because of the lack of comparative data, it is not possible to determine whether use of the patency capsule improves the rate of successful capsule endoscopy or reduces the rate of adverse events. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy

Coding Information

Click the links below for attachments, coding tables & instructions.

[Attachment I- CPT® Code Table & Instructions](#)

When a service may be considered medically necessary

Wireless capsule endoscopy of the small bowel may be considered **medically necessary** for the following indications:

- Initial diagnosis in patients with suspected Crohn disease without evidence of disease on conventional diagnostic tests such as small-bowel follow-through (SBFT) and upper and lower endoscopy.
- In patients with an established diagnosis of Crohn disease, when there are unexpected change(s) in the course of disease or response to treatment, suggesting the initial diagnosis may be incorrect and re-examination may be indicated.
- Obscure gastrointestinal (GI) bleeding suspected of being of small bowel origin, as evidenced by prior inconclusive upper and lower gastrointestinal endoscopic studies performed during the current episode of illness.
- For surveillance of the small bowel in patients with hereditary GI polyposis.
syndromes, including familial adenomatous polyposis and Peutz-Jeghers syndrome.

When a service is considered investigational

Other indications of wireless capsule endoscopy are considered investigational, including but not limited to:

- Evaluation of the extent of involvement of known Crohn disease or ulcerative colitis
- Evaluation of the esophagus, in patients with gastroesophageal reflux (GERD) or other esophageal pathologies
- Evaluation of other gastrointestinal diseases and conditions not presenting with GI bleeding, including but not limited to, celiac sprue, irritable bowel syndrome, Lynch syndrome, portal hypertensive enteropathy, small bowel neoplasm and unexplained chronic abdominal pain
- Evaluation of the colon, including but not limited to, detection of colonic polyps or colon cancer.
- Initial evaluation of patients with acute upper GI bleeding

The patency capsule is considered investigational, including use to evaluate patency of the GI tract before wireless capsule endoscopy

Policy Guidelines

Obscure GI bleeding is defined as “recurrent or persistent iron-deficiency anemia, positive fecal occult blood test, or visible bleeding with no bleeding source found at original endoscopy” (Van Gossum, 2001).

Background

Wireless capsule endoscopy is performed using the PillCam™ Given® Diagnostic Imaging System (previously called M2A®), which is a disposable imaging capsule manufactured by Given Imaging (Norcross, GA). The capsule measures 11 by 30 mm and contains video imaging, self-illumination, and image transmission modules, as well as a battery supply that lasts up to 8 hours. The indwelling camera takes images at a rate of 2 frames per second as peristalsis carries the capsule through the gastrointestinal (GI) tract. The average transit time from ingestion to evacuation is 24 hours. The device uses wireless radio transmission to send the images to a receiving recorder device that the patient wears around the waist. This receiving device also contains some localizing antennae sensors that can roughly gauge where the image was taken over the abdomen. Images are then downloaded onto a workstation for viewing and processing.

In the small bowel, the capsule camera has been most frequently proposed as a technique to identify the source of obscure intestinal bleeding, although recently there has been interest in exploring its use in patients with inflammatory bowel disease. Alternative diagnostic techniques include barium studies or small intestinal endoscopy. In the esophagus, the capsule camera has been proposed as a screening technique for Barrett esophagus associated with gastroesophageal reflux disease. Evaluation of the esophagus requires
limited transit time, and it is estimated that the test takes 20 minutes to perform. Alternative techniques include upper endoscopy.

Regulatory status

On August 1, 2001, the PillCam™ Given® Diagnostic Imaging System (Given Imaging) was cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process. FDA clearance provides for the capsule's use “along with - not as a replacement for - other endoscopic and radiologic evaluations of the small bowel.” FDA clarified that the "capsule was not studied in the large intestine.” On July 1, 2003, a supplemental 510(k) premarket notification was cleared, and the labeled indications were modified by removing the “adjunctive” use qualification: “the Given® Diagnostic System is intended for visualization of the small bowel mucosa. It may be used as a tool in the detection of abnormalities of the small bowel.”

In November 2004, the device received FDA clearance for the following labeled indication: “the Given® Diagnostic System with the PillCam™ ESO Capsule is intended for the visualization of esophageal mucosa.” A new model was cleared by FDA in June 2007, the PillCam ESO2 Capsule. In September 2007, the Olympus Capsule Endoscope System was cleared for marketing by FDA through the 510(k) process for “visualization of the small intestine mucosa.” More recent versions of both these systems also incorporate a blood indicator feature to assist with rapid screening of intestinal lesions with bleeding potential.

In 2006, the Given AGILE™ patency system was also cleared by FDA through the 510(k) process. This system is an accessory to the PillCam video capsule and, according to FDA material, is intended to verify adequate patency of the GI tract before administration of the PillCam in patients with known or suspected strictures. This capsule is of similar size to the endoscopy capsule but is made of lactose and barium and dissolves within 30 to 100 hours of entering the GI tract. It carries a tracer material that can be detected by a scanning device. Excretion of the intact capsule without symptoms (abdominal pain or obstruction) is reported to predict the uncomplicated passage of the wireless capsule.

In 2014, PillCam COLON was granted a de novo 510(k) classification by FDA. The new classification applies to devices with low to moderate risk that have no predicate on the market. PillCam COLON is intended to visualize the colon in patients who have had an incomplete colonoscopy due to a technical impossibility and not incomplete evacuation.

FDA Product Code: NEZ.

Rationale

This evidence review was created in February 2002 and updated periodically with literature review. The most recent update covers the period through July 15, 2015.

Obscure Gastrointestinal Bleeding

Obscure gastrointestinal (GI) tract bleeding is defined as bleeding from the GI tract that persists or recurs without an obvious etiology after imaging with upper and lower endoscopy and radiologic evaluation of the small bowel. Obscure GI bleeding is often detected by fecal
occult blood testing performed for colon cancer screening, and the presence of anemia consistent with persistent blood loss. Without anemia, further testing beyond upper and lower endoscopy is not warranted. Most obscure GI bleeding is due to lesions in the esophagus, stomach, and colon; 5% are due to lesions in the small intestine. Causes of obscure bleeding in the small intestine include angiodysplasia (70%-80%), tumor (5%-10%), and other causes (10%-25%) including those related to medication, infections (tuberculosis), Crohn disease, Meckel diverticulum, Zollinger-Ellison, vasculitis, radiation enteritis, jejunal diverticula, and chronic mesenteric ischemia. In patients older than age 60 years, angiodysplasia is the most likely cause, while in those younger than age 50 years, a small bowel tumor would be the most likely cause of bleeding.

A 2007 position statement by the American Gastroenterological Association (AGA) states that capsule endoscopy should be the third test after upper and lower endoscopy in the evaluation of obscure GI bleeding. Evidence cited in the accompanying technical review caused them to revise prior position statements in which other tests, such as bleeding scans, angiography, repeat endoscopy, enteroscopy, and enteroclysis were recommended, depending on the presence or absence of active bleeding. The arguments supporting the utility of capsule endoscopy are based on several lines of evidence. Capsule endoscopy appears to have higher sensitivity of locating bleeding lesions compared with other diagnostic techniques, when diagnostic yields are compared. The technical review summarizes 10 studies in which capsule endoscopy was compared with push enteroscopy in the same patients. Capsule endoscopy located a source of bleeding in 25% to 55% more patients than push enteroscopy. One study by Hartmann et al compared the findings of capsule endoscopy with what might be considered the criterion standard for localizing bleeding, intraoperative endoscopy. Capsule endoscopy was 95% sensitive in locating bleeding and was able to localize bleeding in a few cases in which intraoperative endoscopy was not. In a study by Pennazio et al in which long-term follow-up was used as the reference standard, capsule endoscopy was 89% sensitive and 95% specific in 56 patients in whom a confirmed diagnosis was obtained. A “true” reference standard for obscure GI bleeding is, in fact, difficult or impossible to achieve, as the bleeding source may resolve and invasive techniques such as surgery cannot be justifiably used.

A 2012 systematic review and meta-analysis by Koulaouzidis et al evaluated 24 studies on capsule endoscopy performed after negative findings on previous diagnostic evaluations including upper and lower endoscopy. Included in the studies were a total of 1960 patients, 1194 (60.9%) of whom had iron-deficiency anemia. The pooled per-patient diagnostic yield of all 24 studies, evaluated by a random-effects model, was 47% (95% confidence interval [CI], 42% to 52%). Almost 50% of the diagnostic yield was for small bowel angioectasias. In a subset of 4 studies focused only on patients with iron-deficiency anemia (n=264 [13.47%]), the pooled diagnostic yield with capsule endoscopy was 66.6% (95% CI, 61.0% to 72.3%) and included more vascular, inflammatory, and mass/tumor lesions.

In 2012, Leung et al reported on 60 consecutive patients with acute melena or hematochezia who were randomized to receive either immediate capsule endoscopy or mesenteric angiography in a 1:1 ratio after nondiagnostic endoscopy and colonoscopy. Capsule endoscopy had a significantly higher diagnostic yield than angiography (53.3% vs 20.0%, p=0.016). The cumulative risk of rebleeding in the angiography and capsule endoscopy group was 33.3% and 16.7%, respectively (log-rank test, p=0.10). After a mean follow-up of 48.5 months, further
transfusion, hospitalization for rebleeding, and mortality were not significantly different between the groups.

Section Summary: Obscure Gastrointestinal Bleeding

There are a large number of uncontrolled studies that evaluate the use of capsule endoscopy in the evaluation of patients with occult GI bleeding. These studies are consistent in reporting that a substantial proportion of patients receive a definitive diagnosis following this test when there are few if any other diagnostic options. A meta-analysis of 24 studies estimated that the diagnostic yield in this patient population was approximately half of the included patients and was higher in patients with documented iron-deficiency anemia.

Acute Upper GI Bleeding

Three 2013 studies with small cohorts of patients (n range, 25-83) have reported on the use of capsule endoscopy before upper endoscopy for acute GI bleeding, to triage and/or risk-stratify patients in the emergency department or hospital. The studies report that capsule endoscopy provides useful information, such as identifying gross bleeding, inflammatory lesions, in a substantial proportion of patients and in stratifying patients into high- or low-risk categories. However, the yield of capsule endoscopy in localizing the bleeding source was lower than for esophagastroduodenoscopy, which is the standard initial evaluation for acute upper GI bleeding. For this reason, it is unlikely that capsule endoscopy can take the place of upper endoscopy for initial evaluation of acute upper GI bleeding. Controlled studies are needed to further assess the impact of capsule endoscopy on health outcomes compared with standard management.

Crohn Disease

Crohn disease is an inflammatory disease of the small intestine. It is usually diagnosed with small bowel imaging studies and ileocolonoscopy. When these studies are negative or equivocal, capsule endoscopy has been proposed as a method for identifying Crohn disease. However, there is no single criterion standard diagnostic test for Crohn disease; the diagnosis is based on a constellation of findings. Thus it is difficult to determine the diagnostic characteristics of various tests used to diagnose the condition and difficult to determine a single comparator diagnostic test to capsule endoscopy. An international consensus from 2009 stated that there are no validated diagnostic criteria for interpreting capsule endoscopy for a diagnosis of Crohn disease, thus, possibly explaining the variability of the diagnostic performance of capsule endoscopy.

Nonetheless, despite the difficulties in evaluating the clinical value of capsule endoscopy in assessing suspected Crohn disease, findings tend to indicate that, compared with other diagnostic modalities, capsule endoscopy has an equivalent or higher yield of positive findings. An international consensus statement found 7 studies comparing capsule endoscopy with small-bowel follow-through (SBFT), 1 study comparing capsule endoscopy with magnetic resonance imaging (MRI), and 4 studies comparing capsule endoscopy with computed tomography (CT) scan. 12 The conclusion statements stated that capsule endoscopy may be superior to these alternative diagnostic tests.

The role of capsule endoscopy in established Crohn disease is less certain. An international
consensus statement states that radiographic imaging should take precedence over capsule endoscopy because of the capability to detect obstructive strictures, extraluminal and transmural disease. The consensus statement identifies some studies in which capsule endoscopy had a higher percentage of positive findings than alternative tests in patients with established Crohn disease, but it is not clear how these findings correlated with either symptoms or the outcome of therapeutic intervention. A 2013 European consensus statement indicates MR enterography or CT enterography is usually preferable to capsule endoscopy in known Crohn disease patients. The 2013 consensus also indicates capsule endoscopy should be limited in patients with Crohn disease to the evaluation of unexplained symptoms, unexplained iron deficiency, or obscure GI bleed after other investigations are inconclusive.

Section Summary: Crohn Disease
For patients with suspected Crohn disease of the small bowel who are unable to be diagnosed by other modalities, capsule endoscopy can confirm the diagnosis in a substantial number of patients. The diagnostic yield in the available studies is variable, but is likely superior to alternative tests such as CT or MRI scanning. The evidence on monitoring or further evaluation of Crohn disease patients is less definitive, and it may not perform as well as other modalities for diagnosing complications of Crohn disease or for differential diagnosis.

Ulcerative Colitis
Ulcerative colitis is an inflammatory disease of the large intestine. It is usually diagnosed with colonoscopy and biopsy. Capsule endoscopy has been proposed as an alternative method for assessing the extent and severity of disease activity in known ulcerative colitis. Sung et al evaluated 100 patients with suspected or known ulcerative colitis using capsule endoscopy and colonoscopy performed on the same day. The authors reported capsule endoscopy sensitivity and specificity to detect active colonic inflammation was 89% (95% CI, 80 to 95) and 75% (95% CI, 51 to 90), respectively. The positive and negative predictive values were 93% (95% CI, 84 to 97) and 65% (95% CI, 43 to 83), respectively. It does not appear to be an adequate alternative method of assessing disease activity.

Suspected Celiac Disease
Celiac disease or gluten-sensitive enteropathy, is an immune-mediated condition of the small intestine. Serologic markers of the disease have good sensitivity and specificity, but the criterion standard for diagnosis of celiac disease is obtained through small-bowel biopsies obtained during endoscopy. Capsule endoscopy has been evaluated as an alternative method of diagnosing celiac disease or in assessing the extent of disease to improve management of patients.

A meta-analysis by El-Matary et al compared the diagnostic performance of capsule endoscopy with a reference standard of duodenal biopsy. The pooled analysis of 3 studies showed a sensitivity of 83% and a specificity of 98%. Another meta-analysis by Rokkas and Niv also compared the diagnostic performance of capsule endoscopy with biopsy, summarizing 6 studies that evaluated a total of 166 subjects. The overall pooled sensitivity was 89% and the specificity was 95%. Capsule endoscopy was able to detect involvement of intestines beyond the duodenum; however, the clinical significance of detecting further extent of celiac
disease is uncertain. Given the less than 90% sensitivity of capsule endoscopy for celiac disease, it does not appear to be an adequate alternative method of making an initial diagnosis.

The role of capsule endoscopy in unconfirmed, nonresponsive, or established celiac disease has little evidence to assess. One study evaluated 47 patients with complicated celiac disease and found unexpected additional findings in 60% of patients, most of which were ulcerations. However, the definition of “complicated” celiac disease included other factors such as evidence of blood loss, itself an indication for capsule endoscopy. The impact on patient management and outcomes is unclear.

In a 2013 study by Kurien et al, 62 patients with an equivocal diagnosis of celiac disease and 69 patients with confirmed celiac disease who were unresponsive to standard treatment were evaluated with capsule endoscopy. Results were combined with HLA typing and response to gluten challenge, with the final diagnosis made by 3 expert physicians who were provided with the information from all 3 sources. The main outcome was the increase in diagnostic yield after capsule endoscopy combined with the other tests. The diagnostic yield was greatest in cases with antibody negative villous atrophy where a diagnosis of celiac disease (or Crohn disease) was made in 9 of 32 patients (28%). In 8 of the 69 (12%) nonresponsive celiac disease patients, capsule endoscopy identified 2 cases of enteropathy-associated lymphoma, 4 type 1 refractory disease cases, 1 fibroepithelial polyp, and 1 case of ulcerative jejunitis. This study is limited by the lack of control groups and small sample size, in addition to the use of other tests in conjunction with capsule endoscopy for the ascertainment of a final diagnosis.

Section Summary: Suspected Celiac Disease
In cases where the diagnosis of celiac disease is equivocal, capsule endoscopy can sometimes uncover morphologic changes in the small bowel consistent with celiac disease. However, it is unlikely that the appearance of small bowel on capsule endoscopy is itself sufficient to make a definitive diagnosis of celiac disease. Small bowel biopsy, celiac serologies, and HLA typing remain the standard tests for confirming celiac disease and have a higher sensitivity and specificity for this purpose.

Esophageal Conditions
Capsule endoscopy has the capability of visualizing several types of esophageal conditions. It could potentially substitute for traditional upper endoscopy for several indications and may have an advantage of comfort and convenience. However, interventional procedures and biopsies cannot be performed.

Most studies have shown that capsule endoscopy has inferior diagnostic characteristics compared with traditional upper endoscopy for a variety of esophageal conditions. A meta-analysis of 9 studies comparing capsule endoscopy with traditional endoscopy for detecting esophageal varices calculated a sensitivity of 83% and specificity of 85%. Another meta-analysis of 9 studies comparing capsule endoscopy with traditional endoscopy for detecting Barrett esophagus showed a sensitivity and specificity of 77% and 86%, respectively. The sensitivity of the test is not good enough to substitute for endoscopy.
Colon Cancer Screening
Capsule endoscopy has been investigated as a method of colon cancer screening. The test may detect precancerous polyps or actual cancer. Several studies have assessed the accuracy of capsule endoscopy for detection of colonic lesions. In the largest study identified, 884 patients with average risk for colon cancer were enrolled. All patients underwent capsule endoscopy followed by optical colonoscopy several weeks later. There were a high number of exclusions from analysis (189/885 [21% of total]) due to inadequate cleansing, colon transit time less than 40 minutes, site termination, and patient lost to follow-up. For detecting any polyps greater than 6 mm, capsule colonoscopy had an 81% sensitivity (95% CI, 77% to 84%) and a 93% specificity (95% CI, 91% to 95%), when optical colonoscopy was used as the gold standard. For polyps greater than 10 mm, the sensitivity was 80% (95% CI, 76% to 84%) and the specificity was 97% (95% CI, 96% to 98%).

In another similar study of 328 patients, the sensitivity of capsule endoscopy was 64% for polyps 6 mm or larger, 73% for advanced adenoma, and 74% for cancer. Other smaller studies show the sensitivity of capsule endoscopy for various types of lesions to be less than 80%. A meta-analysis by Spada et al of 8 studies enrolling 837 patients showed a sensitivity of 71% for polyps of any size and a specificity of 75%. Almost all the existing studies evaluating capsule endoscopy for detecting colonic lesions have enrolled patients with a clinical indication for colonoscopy rather than a screening population. Based on the low sensitivity for colonic polyps, capsule endoscopy is unlikely to be an effective screening test for colon cancer unless it is repeated more frequently than colonoscopy. The specificity of the test is not optimal either, meaning that patients will undergo unnecessary follow-up colonoscopy.

Hereditary GI Polyposis Syndromes
Persons with familial adenomatous polyposis and Peutz-Jeghers syndrome are at genetically high risk of small bowel polyps and tumors. Mata et al studied the role of capsule endoscopy in 24 patients with hereditary GI polyposis syndromes, including familial adenomatous polyposis (n=20) or Peutz-Jeghers syndrome (n=4). Compared with barium studies using small bowel enteroclysis, capsule endoscopy identified 4 additional patients with small bowel polyps, which were subsequently removed with endoscopic polypectomy. Another study by Brown et al in 19 patients showed a greater number of polyps identified with capsule endoscopy than with barium follow-through examinations. Urquhart et al compared capsule endoscopy with magnetic resonance enterography (MRE) in 20 patients with Peutz-Jeghers syndrome. Capsule endoscopy identified more polyps 10 mm or larger than MRE (47 vs 14 polyps, respectively; p=0.02). However, subsequent balloon enteroscopy in 12 patients showed poor correlation of findings between techniques with a 100% positive predictive value of finding a polyp on balloon enteroscopy with MRE versus 60% for capsule endoscopy. Although these studies are small, they demonstrate that capsule endoscopy can identify additional lesions in persons with disease syndromes at high risk for such lesions.

There is a small amount of evidence on use of capsule endoscopy for small bowel screening in Lynch syndrome. These data are insufficient to determine the prevalence and/or natural history of small bowel polyps in patients with Lynch syndrome. In addition, surveillance of the small bowel is not generally recommended as a routine intervention for patients with
Lynch syndrome. For this reason, it is not possible to determine whether capsule endoscopy improves outcomes for patients with Lynch syndrome.

Portal Hypertensive Enteropathy

Patients with liver cirrhosis and portal hypertension can develop portal hypertensive enteropathy, which may lead to GI bleeding. Capsule endoscopy has been considered as a diagnostic tool for portal hypertensive enteropathy. A Cochrane Collaboration systematic review on the use of capsule endoscopy for the diagnosis of esophageal varices was published in 2015. This analysis included 16 studies of adults with cirrhosis. All patients underwent capsule endoscopy followed by esophagogastroduodenoscopy. Most of the studies were judged to be at high risk for bias. On pooled analysis, the sensitivity of capsule endoscopy was 84.8% (95% CI, 77.3 to 90.2) and the specificity was 84.3% (95% CI, 73.1 to 91.4). A subset analysis of studies that were at low risk for bias reported a sensitivity of 79.7% (95% CI, 73.1% to 85.0%) and a specificity of 86.1% (95% CI, 64.5% to 95.5%).

Jean et al evaluated capsule endoscopy registry data on 45 patients with cirrhosis and portal hypertension. Capsule endoscopy identified angiodysplasias and varices in 55.7% and 38.9% of portal hypertensive enteropathy patients (n=18) versus 7.4% and 0% in patients without portal hypertensive enteropathy (n=27), respectively (p=0.001 in both). Active bleeding was not significantly different but was found in 16.6% of portal hypertensive enteropathy patients versus 3.7% of patients without portal hypertensive enteropathy. Data are not available to determine whether capsule endoscopy evaluation of cirrhosis patients with portal hypertension lead to management changes that improve health outcomes.

Unexplained Chronic Abdominal Pain

Capsule endoscopy has been proposed as a diagnostic tool for unexplained chronic abdominal pain. Xue et al reported on a systematic review of 21 studies (N=1520) evaluating capsule endoscopy for unexplained chronic abdominal pain. The pooled diagnostic yield was 20.9% (95% CI, 15.9% to 25.9%). The most commonly identified findings were inflammatory lesions (78.3%) and tumors (9.0%). The studies in the review were highly heterogeneous. Limitations in interpreting the findings included retrospective study design, different durations of abdominal pain, and use of different tests before capsule endoscopy.

In another study that was not included in the systematic review, Yang et al reported on 243 patients evaluated with capsule endoscopy for unexplained chronic abdominal pain. The diagnostic yield of capsule endoscopy was 23.0%. Identified findings included 19 (7.8%) patients with Crohn disease, 15 (6.2%) with enteritis, 11 (4.5%) with idiopathic intestinal lymphangiectasia, 5 (2.1%) with unicorniasis, 5 (2.1%) with abnormal transit time and other findings such as small bowel tumor, ascariasis, and anaphylactoid purpura. While capsule endoscopy may yield a diagnosis for unexplained chronic abdominal pain, the accuracy of the findings is unclear. Additionally, the sequence and chronology of testing and treatment recommended before capsule endoscopy needs to be defined. Therefore, the current evidence is insufficient to determine whether capsule endoscopy is necessary to alter a course of treatment for unexplained chronic abdominal pain to improve health outcomes.

Patency Capsule
Contraindications to the use of capsule endoscopy include known or suspected obstruction or stricture, Zenker diverticulum, intestinal pseudo-obstruction, and motility disorders. Certain patients with known or suspected strictures of the small bowel may be at risk of retaining the capsule. Surgical removal may be necessary. There are limited data on the performance of the patency capsules proposed as a technique to evaluate patients with known or suspected strictures before using the wireless capsule endoscopy system. The capsule could be used either to eliminate certain patients who are considered low risk for capsule retention to further increase the safety of capsule endoscopy or to select patients at high risk for capsule retention who would otherwise not undergo capsule endoscopy. In either scenario, it needs to be determined whether the change in diagnostic strategy and ultimate treatment was ultimately improved as a consequence of either being selected or deselected to have a capsule endoscopy.

These improvements would need to be weighed against any complications due to the use of the patency capsule. The published studies are small and do not provide comparative data about the incremental value of this capsule over standard clinical evaluation. Also, in some series, administration of the patency capsule has produced symptoms requiring hospitalization and even surgery. In a series from Europe, Delvaux et al reported on findings in 22 patients with suspected intestinal stricture, 15 of whom had Crohn disease. In this study, at 30 hours after ingestion, the patency capsule was detected in 17 patients (72.3%). In all patients in whom the capsule was blocked in the small intestine, the stenosis had been suspected on CT scan or small bowel follow-through. In 3 patients, the delay in progression of the patency capsule led to cancellation of capsule endoscopy. In 3 patients, the patency capsule induced a symptomatic intestinal occlusion, which resolved spontaneously in 1 and required emergency surgery in 2. The authors commented that the current technical development of the patency capsule limits its use in clinical practice, as it did not detect stenoses undiagnosed by CT or small-bowel follow-through, and the start of dissolution at 40 hours after ingestion is too slow to prevent episodes of intestinal occlusion. They also comment that a careful interview eliciting the patient's history and symptoms remains the most useful indicator with regard to suspicion of an intestinal stenosis. In another study from Europe, Spada et al reported on findings in 27 patients, 24 with Crohn disease. In this study, 25 patients (92.6%) retrieved the patency capsule in their stools. Six patients complained of abdominal pain, 4 of whom excreted a nonintact capsule, and hospitalization was required in 1 patient due to occlusive syndrome.

Several studies show that patients who had uncomplicated passage of the patency capsule subsequently underwent uncomplicated capsule endoscopy. These patients often had significant findings on capsule endoscopy. However, it is difficult to determine whether the findings of capsule endoscopy in these patients improved their outcomes beyond any alternate test regimen that could have been done. In 1 of these studies, 3 of 106 patients had severe adverse events, including 1 patient who required surgery. The overall balance of harm and benefit of using the patency capsule cannot be determined from the existing studies.

Summary of Evidence
The evidence on wireless capsule endoscopy for patients with occult gastrointestinal (GI) bleeding includes numerous case series that evaluate patients with a nondiagnostic standard
workup. Relevant outcomes are test accuracy, test validity, and other test performance measures. The evidence demonstrates that capsule endoscopy can identify a bleeding source in a substantial number of patients who are unable to be diagnosed by other methods, with a low incidence of adverse events. Because there are no other options for diagnosing obscure small bowel bleeding in patients who have negative upper and lower endoscopy, this technique will likely improve health outcomes by directing specific treatment when a bleeding source is identified. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.

The evidence on wireless capsule endoscopy for patients with suspected small bowel Crohn disease or patients with an established diagnosis of Crohn disease who remain symptomatic or develop new, unexpected symptoms includes case series. Relevant outcomes are test accuracy, test validity, and other test performance measures. Although the performance characteristics and diagnostic yield of the capsule for this indication is less certain, there are also no other good diagnostic options, and as a result it is likely to improve health outcomes by identifying some cases of these disorders and directing specific treatment. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.

The evidence on wireless capsule endoscopy for other conditions, including acute upper GI bleeding, determining the extent of involvement in Crohn disease, ulcerative colitis, celiac disease, esophageal conditions, Lynch syndrome, colon cancer screening, portal hypertensive enteropathy, unexplained chronic abdominal pain, and for determination of patency of the GI tract includes case series and some diagnostic accuracy studies. Relevant outcomes are test accuracy, test validity, and other test performance measures. For some of these conditions, eg, esophageal conditions and colon cancer screening, other modalities are available that are superior to capsule endoscopy. For other conditions, eg, determining the extent of Crohn disease, the accuracy of the device needs to be established before determining whether outcomes are improved. The evidence is insufficient to determine the effects of the technology on health outcomes.

The evidence on the patency capsule when used as a preliminary test for wireless capsule endoscopy consists of case series. Relevant outcomes are test validity and other test performance measures. Available studies report that capsule endoscopy following a successful patency capsule test results in high rates of success with low rates of adverse events. Because of the lack of comparative data, it is not possible to determine whether use of the patency capsule improves the rate of successful capsule endoscopy or reduces the rate of adverse events. The evidence is insufficient to determine the effects of the technology on health outcomes.

Practice Guidelines and Position Statements

American College of Gastroenterology
The American College of Gastroenterology (ACG) issued 2013 guidelines on the diagnosis and management of celiac disease. The guideline recommendations state that capsule endoscopy should not be used for initial diagnosis except for patients with positive-celiac specific serology who are unwilling or unable to undergo upper endoscopy with biopsy.
Capsule endoscopy should be considered for the evaluation of small-bowel mucosa in patients with complicated Crohn disease (strong recommendation, moderate level of evidence). ACG issued 2009 guidelines on the management of Crohn disease in adults. The guidelines state that recent use of video capsule endoscopy has been assessed in a prospective blinded evaluation and was shown to be superior in its ability to detect small bowel pathology missed on small bowel radiographic studies and CT radiographic examinations. However, because there is a risk of capsule retention in up to 13% of patients with Crohn disease, which could require surgical intervention, capsule endoscopy is considered to be a contraindication in patients with known small bowel strictures. It is recommended that radiographic studies such as CT enterography, SBFT, or MRI be done to assess for the presence of unsuspected bowel strictures before capsule endoscopy. A “patency capsule” may also be considered.

American Gastroenterological Association
A 2007 position statement by American Gastroenterological Association states the following concerning obscure GI bleeding and capsule endoscopy:

- Evaluation of the patient with obscure GI bleeding is dependent on the extent of the bleeding and the age of the patient.
- Patients with occult GI blood loss and no anemia most likely do not require evaluation beyond colonoscopy unless upper tract symptoms are present.
- Patients with occult GI blood loss and iron-deficiency anemia and negative workup on esophagastroduodenoscopy (EGD) and colonoscopy need comprehensive evaluation, including capsule endoscopy to identify an intestinal bleeding lesion.

European Crohn’s and Colitis Organisation and Organisation Mondiale d’Endoscopie Digestive
An international consensus panel from 2009 published guidelines on the use of wireless capsule endoscopy for inflammatory bowel disease. These guidelines included the following statements about evaluation of Crohn disease:

- Small bowel capsule endoscopy is able to identify mucosal lesions compatible with Crohn’s disease in some patients in whom conventional endoscopic and small-bowel radiographic imaging modalities have been nondiagnostic.
- A diagnosis of Crohn’s disease should not be based on the appearances at capsule endoscopy alone.
- A normal capsule endoscopy has a high negative predictive value for active small-bowel Crohn’s disease.
- For patients with established Crohn’s disease, small bowel capsule endoscopy is better at identifying small-bowel mucosal lesions than barium and may be better than CT or MR enterography or enteroclysis, but the clinical significance of this potential difference remains to be defined.
- There are no validated diagnostic criteria for small bowel capsule endoscopy for the diagnosis of Crohn’s disease.
European Commission

European guidelines for quality assurance in colorectal cancer screening and diagnosis, published in 2012, indicate capsule endoscopy is not recommended for screening for colorectal cancer. These guidelines indicate studies have shown capsule endoscopy to be inferior to colonoscopy in diagnostic performance.

Reference Resources

role in equivocal cases of celiac disease? *Gastrointest Endosc.* Feb 2013;77(2):227-232. PMID 23200728

Document Precedence

Blue Cross and Blue Shield of Vermont (BCBSVT) Medical Policies are developed to provide clinical guidance and are based on research of current medical literature and review of common medical practices in the treatment and diagnosis of disease. The applicable group/individual contract and member certificate language, or employer’s benefit plan if an ASO group, determines benefits that are in effect at the time of service. Since medical practices and knowledge are constantly evolving, BCBSVT reserves the right to review and revise its medical policies periodically. To the extent that there may be any conflict between medical policy and contract/employer benefit plan language, the member’s contract/employer benefit plan language takes precedence.

Audit Information

BCBSVT reserves the right to conduct audits on any provider and/or facility to ensure compliance with the guidelines stated in the medical policy. If an audit identifies instances of non-compliance with this medical policy, BCBSVT reserves the right to recoup all non-compliant payments.

Administrative and Contractual Guidance

Benefit Determination Guidance

Prior approval is required and benefits are subject to all terms, limitations and conditions of the subscriber contract.

Incomplete authorization requests may result in a delay of decision pending submission of missing information. To be considered compete, see policy guidelines above.

An approved referral authorization for members of the New England Health Plan (NEHP) is required. A prior approval for Access Blue New England (ABNE) members is required.
NEHP/ABNE members may have different benefits for services listed in this policy. To confirm benefits, please contact the customer service department at the member’s health plan.

Federal Employee Program (FEP): Members may have different benefits that apply. For further information please contact FEP customer service or refer to the FEP Service Benefit Plan Brochure. It is important to verify the member’s benefits prior to providing the service to determine if benefits are available or if there is a specific exclusion in the member’s benefit.

Coverage varies according to the member’s group or individual contract. Not all groups are required to follow the Vermont legislative mandates. Member Contract language takes precedence over medical policy when there is a conflict.

If the member receives benefits through an Administrative Services Only (ASO) group, benefits may vary or not apply. To verify benefit information, please refer to the member’s employer benefit plan documents or contact the customer service department. Language in the employer benefit plan documents takes precedence over medical policy when there is a conflict.

Policy Implementation/Update Information

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/2004</td>
<td>New policy</td>
</tr>
<tr>
<td>11/2005</td>
<td>Updated with attachment</td>
</tr>
<tr>
<td>10/2006</td>
<td>Updated to add medical necessity for surveillance of the small bowel with hereditary gastrointestinal polyposis syndromes, and to delineate FDA contraindications</td>
</tr>
<tr>
<td>10/2007</td>
<td>Revised to mirror BCBSA Policy including format. This involved no substantive changes. Reviewed by the CAC 01/2008</td>
</tr>
<tr>
<td>05/2009</td>
<td>Unchanged; reviewed by CAC 05/2009</td>
</tr>
<tr>
<td>04/2010</td>
<td>Patency capsule added to the list of specific criteria for investigational; reviewed by CAC 05/2010</td>
</tr>
<tr>
<td>03/2014</td>
<td>ICD-10 remediation and CPT update. CPT update from 2013 adaptive maintenance.</td>
</tr>
<tr>
<td>11/2015</td>
<td>Adoption of Blue Cross and Blue Shield Association MPRM# 6.01.33. Code table updated.</td>
</tr>
<tr>
<td>12/2017</td>
<td>Policy updated with literature review and references. Policy statements remain unchanged.</td>
</tr>
</tbody>
</table>

Eligible providers

Qualified healthcare professionals practicing within the scope of their license(s).

Approved by BCBSVT Medical Directors Date Approved
Attachment I

CPT® Code List & Instructions

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Number</th>
<th>Description</th>
<th>Policy Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>The following codes will be considered as medically necessary when applicable criteria have been met.</td>
<td></td>
</tr>
<tr>
<td>CPT®</td>
<td>91110</td>
<td>Gastrointestinal tract imaging, intraluminal (eg, capsule endoscopy), esophagus through ileum, with interpretation and report.</td>
<td>Prior approval required</td>
</tr>
<tr>
<td>CPT®</td>
<td>91112</td>
<td>Gastrointestinal transit and pressure measurement, stomach through colon, wireless capsule, with interpretation and report.</td>
<td>Prior approval required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following code will be denied as Investigational</td>
<td></td>
</tr>
<tr>
<td>CPT®</td>
<td>0355T</td>
<td>Gastrointestinal tract imaging, intraluminal (eg, capsule endoscopy), colon, with interpretation and report</td>
<td>Investigational</td>
</tr>
<tr>
<td>CPT®</td>
<td>91111</td>
<td>Gastrointestinal tract imaging, intraluminal (eg, capsule endoscopy), esophagus with interpretation and report.</td>
<td>Investigational</td>
</tr>
</tbody>
</table>